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Abort Effectiveness In a Nutshell (Avocado?) 
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Abort Effectiveness In a Nutshell (Avocado?) 
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Some of the Complexities 
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Reality: There are flavors of uncontained, each with its own character 

LOC fraction will depend on: 

• Mission time (flight conditions, etc.) 

• Failure detection (warning time) 



Historical Context 

• ESAS 

− LOC = 0.15*LOM 

 

• Ares 1 Upper Stage Engine 

− Early: All uncontained  Stage Explosion 
• Focus was on environment characterization (blast, fragments)  

− Late: 30% uncontained  Stage Explosion  

• Based on analysis by Ken Gee 

 

• SLS Complexity 

− Liquid first stage 

• Multiple engines 

• Confined volume 

− Strap-on boosters 

 

• SLS Core Stage Engine 

− Early: 50%  Stage Explosion (weaker) 

− Current: Why we’re here 
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Abortability Example 

 

• What is likelihood that, given a main engine turbo-pump burst failure, there will 
serious injury or death of one or more crew members? 

− What is the likelihood that there will be a “large” explosion (explosion of full stage)? 

− What is the likelihood that a large explosion will critically damage the crew module? 

 

− How does it vary with mission time? 

− How does it vary with warning time? 

 

 

 

 

 

 

 

 

 

 

 

 

• Note: importance of propagation depends on proximity of crew module.  

8 

Initial 

Manifestation 

Potential resulting 

explosion(s) 

X 
X 



Failure Propagation Model Overview 
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Selected initiator: Stage 1 turbopump failure 

Paths go horizontally and then vertically 

Simple Propagation Matrix Example 
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Stage 1 TP burst causes (leakage) aft skirt explosion 

Stage 1 TP burst causes (fragment strike) He tank explosion 

Simple Propagation Matrix Example 
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Aft skirt explosion causes (overpressure) Stage 1 tank rupture 

He tank explosion causes (fragment) Stage 1 inter-tank CBM 

Simple Propagation Matrix Example 
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Simple Propagation Matrix Example 
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Tree Pruning 
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Monte Carlo results are binned to produce the desired mapping  
(branch splits) between the initial manifestation and the explosion(s)  

Sample Monte Carlo Results 
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Implementation for Complex Cases 
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Transition Data Table Snippet 

Pre-Launch 

Stage 1 Boost 

Stage 1 Shutdown/Separation 

Phase and propagation 

resistance sensitivities 

Mapping: Dependence on Phase 



SLS Propagation Graph 
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Example of Complex Failure Event Tree 
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5-stage process 

11 triggered environments (not including initiator) 

4 triggered explosion types 



Transition Analysis Thought Process 

• Energy Transfer Mode(s) 

− Overpressure 

− Kinetic Energy (Fragments) 

− Shock & Vibration 

− Environment (pressure, temperature) 

− Etc. 

• Source Severity 

− Energy type: [KE] 

− Magnitude: [Velocity and density] 

− Uncertainties: [Velocity and density] 

• Target Vulnerability 

− Energy type: [KE] 

− Magnitude: [Size, Location, Limit velocity] 

− Uncertainties: [Limit velocity] 

• Energy Decay 

− Natural decay with distance: [1/d2] 

− Obstructions: [%] 
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Example: TP Burst  He tank burst 



Engine Section Propagation 

• Modes 

−Fragments 
• Uncontained engine failures 

• COPV bursts (subsequent to being struck), assumed uniform in all directions 

−Overpressure 
• MCC explosion 

• COPV burst 

−Leaks 
• Propellant 

• Hot Gas 
-TP pre-burners 

-MCC 

• COPV burst 

• Primary Outcomes 

−LH2 Tank Rupture 
• Core nonCBM 

−ES Burst (rupture) 
• Damage to nozzle propellant lines multiple engines uncontained or loss of thrust 

−Multiple engines uncontained 
• Many consequences 

−Core loss of thrust 
• LH2 tank rupture (when boosters on and burning) 

Antares User Guide 

Vempty ~50m3 



Conclusions and Future Work 

Status 

• Propagation model has been implemented 

− Complex interactive process modeled with a number of simpler interactions 

− Automatically generates potentially complex failure event sequences 

• Advantages 

− Facilitate communication with engineers regarding consequences of failure 

− Enables complex mission phase behavior to be captured 

− Tracks and accumulates failure evolution times (where available) 

− Easy to set up easy problems but can be expanded to more complex problems 

• Currently being used in support of the Space Launch System (SLS) and 
Commercial Crew programs 

 

Potential Enhancements 

• More automated transition probability evaluation 

• Integration with CAD-based simulation methodology 
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Antares Failure: October 28, 2014 
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Orbital Sciences Antares Rocket 
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Antares Engine Section 
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AJ-26 Engines 

• Antares powered by dual AJ-26 engines 

− LOX-Kerosene 

− Staged combustion 

• Both engines on this flight were manufactured for the 
Soviet N1 rocket in the 1960s and 1970s 

• Conversion to AJ-26 involved: 

− Updated electronics for new electromechanical valve 
actuators 

− Modifications to fuel systems 

− Added hydraulic TVC system 

• Acceptance tests were performed for each engine 

− One minute burn 

− Failure in May during one of these acceptance tests 

• Described as an explosion 

− Failure in 2011 

• Kerosene leak leading to fire 

• Traced to stress corrosion cracks in metal 
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